Les ondes gravitationnelles
Les ondes gravitationnelles sont des vibrations dans le tissu de l'univers (espace_temps), qui se produisent en raison de phénomène violants dans l'univers tel que la coalescence de deux trous noir ou le mouvement d'étoiles à neutrons.
Historique.
En 1905, Albert Einstein propose la théorie de la relativité restreinte, qui indique l'existence d'un lien profond entre le temps et l'espace. En plus des trois dimensions spatiales, Einstein a ajouté une quatrième dimension, qui est le temps, pour former ensemble ce que l'on appelle l'espace-temps.
Après des années de théorie de la relativité restreinte, Einstein est revenu en 1915 pour utiliser le nouveau concept d'espace-temps pour expliquer le mécanisme de l'action de la gravité, où, contrairement à la théorie de Newton sur la gravité (les objets plus lourds sont attirés par des objets plus petits), qui a duré des siècles, Einstein a expliqué que la gravité est une déviation dans Espace-temps.
Einstein considérait que l'univers est un tissu composé de quatre dimensions, qui sont l'espace-temps, et que tous les corps et toutes les énergies y sont situés, et la présence de tout corps ou énergie conduit à une courbure dans le tissu de l'univers, et donc des corps plus lourds provoquent des courbures plus grandes et attirent ainsi des objets plus légers vers eux.
La transmission des ondes gravitationnelles dans l'univers.
Lorsque deux trous noirs tournent l'un autour de l'autre bilatéralement, cette rotation mutuelle et violente, qui peut durer des millions d'années, déstabilise le tissu de l'univers, créant des ondes gravitationnelles, et à mesure que les deux trous noirs se rapprochent davantage, leur vitesse augmente jusqu'à atteindre la moitié de la vitesse de la lumière, et en un instant Les deux trous fusionnent pour former un nouveau trou noir plus grand. Au moment exact de la fusion, une onde gravitationnelle se forme qui se propage dans tout le tissu de l'univers et continue de se propager pendant des millions d'années.
Malgré l'ampleur de l'événement, les ondes gravitationnelles qui en résultent sont infinitésimales ne dépassant pas une partie du diamètre d'un atome d'hydrogène par rapport à la distance entre la terre et le soleil, et les scientifiques n'ont donc pas été en mesure de les surveiller ou de les calculer, et les ondes gravitationnelles ne sont donc restées qu'une hypothèse, jusqu'en 2016.
Les expériences de mesure d'ondes gravitationnelles.
En utilisant l'interférence laser, les scientifiques ont pu mener deux expériences avec des mesures très précises qui nous ont permis de détecter enfin les ondes gravitationnelles le 11 février 2016, et 100 ans plus tard, la relativité générale d'Einstein a été validée.
L'expérience de l'Observatoire LIGO.
LIGO est l'abréviation de (lazer interferometer gravitational_waves observatory), il est composé de deux observations au sol, l'une à Hanford, dans l'État de Washington, et l'autre à Livingston, en Louisiane.LIGO s'appuie sur les propriétés de longueur d'onde de la lumière pour mesurer les changements de vitesse à laquelle les impulsions lumineuses arrivent.
La lumière a un comportement d'onde dans sa propagation dans l'espace, par lequel son champ électromagnétique passe d'une valeur maximale à une valeur minimale selon une fonction sinusoïdal.
Donc l'idée de l'expérience est similaire à celle de Michelson-Merulley pour l'interférence et consiste en deux miroirs, un récepteur ou un détecteur de lumière et un diffuseur de lumière afin d'obtenir deux faisceaux lumineux à partir d'une source.
La lumière laser va au détecteur de la source laser LS, en passant par le diffuseur optique B, qui envoie la moitié de la lumière vers le miroir M1 et l'autre moitié vers le miroir M2. La lumière incidente est réfléchie vers les deux miroirs et retourne vers le distributeur optique B, de sorte que la lumière provenant des miroirs M1 et M2 est à nouveau divisée et tourne de moitié Vers le détecteur LD, tandis que l'autre moitié retourne au détecteur LS, comme indiqué sur l'image ci-contre.
En physique, ces installations sont appelées échelle d'interférométrie de Michelson.
Ceci est une illustration simplifiée de l'expérience réelle, qui est beaucoup plus complexe, car la longueur d'un bras, qui est la distance entre le séparateur de lumière et les deux miroirs, est de 4 km. Les complications sont comment les deux miroirs peuvent être suspendus d'une manière qu'ils peuvent être affectés par l'onde gravitationnelle comme s'il s'agissait de particules en mouvement libre dans l'espace, en plus de la façon dont L'énorme observatoire peut être isolé des vibrations du sol causées par le mouvement des trains et des voitures.
Malgré la difficulté de l'expérience et la précision des ondes gravitationnelles, le 11 février 2016, LIGO a pu surveiller une vibration précise et claire originaire de l'espace qui correspond à la fusion de deux trous noirs, et cela a abouti à un flash dont la puissance est équivalente à celle de toutes les étoiles de l'univers, et cela a duré 20m /s, l'événement ( La fusion de deux trous noirs) s'est produite il y a un milliard d'années et l'onde gravitationnelle a continué à se déplacer dans le tissu de l'espace-temps pendant un milliard d'années jusqu'à ce qu'elle provoque une déformation dans les bras de l'observatoire du LIGO.
Pourquoi la découverte des ondes gravitationnelles est-elle importante?
La découverte des ondes gravitationnelles est importante car elle est considérée comme une nouvelle fenêtre pour regarder l'univers. Après que Galilée a utilisé le télescope pour la première fois, qui a changé notre vision de l'univers par l'observation visuelle ou invisible, la théorie des ondes gravitationnelles est une nouvelle façon de regarder l'univers en entendant les vibrations qui se produisent dans le tissu de l'univers.
Les scientifiques espèrent aujourd'hui utiliser la théorie des ondes gravitationnelles pour identifier le phénomène cosmique le plus violent et la plus grande vibration que l'on puisse imaginer, qui est la grande secousse qui s'est produite lors de l'émergence de l'univers il y a 14 milliards d'années.
0 commentaires:
Enregistrer un commentaire